Semilinear elliptic equations with Hardy potential and subcritical source term
نویسندگان
چکیده
منابع مشابه
Large Solutions to Semilinear Elliptic Equations with Hardy Potential and Exponential Nonlinearity
On a bounded smooth domain Ω ⊂ R we study solutions of a semilinear elliptic equation with an exponential nonlinearity and a Hardy potential depending on the distance to ∂Ω. We derive global a priori bounds of the Keller–Osserman type. Using a Phragmen–Lindelöf alternative for generalized sub and super-harmonic functions we discuss existence, nonexistence and uniqueness of so-called large solut...
متن کامل”boundary Blowup” Type Sub-solutions to Semilinear Elliptic Equations with Hardy Potential
Semilinear elliptic equations which give rise to solutions blowing up at the boundary are perturbed by a Hardy potential μ/δ(x, ∂Ω). The size of this potential effects the existence of a certain type of solutions (large solutions): if μ is too small, then no large solution exists. The presence of the Hardy potential requires a new definition of large solutions, following the pattern of the asso...
متن کاملAsymptotic Behavior of Solutions to Semilinear Elliptic Equations with Hardy Potential
Let Ω be an open bounded domain in RN (N ≥ 3) with smooth boundary ∂Ω, 0 ∈ Ω. We are concerned with the asymptotic behavior of solutions for the elliptic problem: (∗) −∆u− μu |x|2 = f(x, u), u ∈ H 0 (Ω), where 0 ≤ μ < ( N−2 2 )2 and f(x, u) satisfies suitable growth conditions. By Moser iteration, we characterize the asymptotic behavior of nontrivial solutions for problem (∗). In particular, we...
متن کاملSolutions for semilinear elliptic problems with critical Sobolev-Hardy exponents and Hardy potential
Let Ω ⊂ RN be a smooth bounded domain such that 0 ∈ Ω , N ≥ 5, 0 ≤ s < 2, 2∗(s) = 2(N−s) N−2 . We prove the existence of nontrivial solutions for the singular critical problem − u − μ u |x |2 = |u| 2∗(s)−2 |x |s u + λu with Dirichlet boundary condition on Ω for all λ > 0 and 0 ≤ μ < ( N−2 2 )2 − ( N+2 N )2. © 2005 Elsevier Ltd. All rights reserved. MSC: 35J60; 35B33
متن کاملExistence of Nonnegative Solutions for Semilinear Elliptic Equations with Subcritical Exponents
where Ω is a bounded domain in R , N ≥ 3, with a smooth boundary ∂Ω and f : Ω× R× R → R. The existence of positive solutions to (1.1) in the case where f depends only on u and grows subcritically has been studied extensively in recent years (see the review article by Lions [3] and the references therein). In this paper, we establish the existence of nonnegative solutions to (1.1) where f has a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Calculus of Variations and Partial Differential Equations
سال: 2017
ISSN: 0944-2669,1432-0835
DOI: 10.1007/s00526-017-1144-6